CHAMP:Manual: Difference between revisions

From Monnier Group Research Wiki
Jump to navigationJump to search
No edit summary
Monnier (talk | contribs)
No edit summary
Line 19: Line 19:


---+ Real-time system
---+ Real-time system
---++ Xenomai
Click here for detail on the upgrade to the realtime system  [[RT_System]]  
---+++ Install
Debian network install using debian-503-i386-businesscard.iso
 
I used linux.csua.berkrley.edu as a mirror for Debian archive.
The install is pretty straightforward. I used guided partitioning using entire disc.
After install and reboot edit /etc/network/interfaces to look like this:
 
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
 
# The loopback network interface
auto lo
iface lo inet loopback
 
# The primary network interface
allow-hotplug eth0
iface eth0 inet static
        address 192.168.3.136
        netmask 255.255.255.0
        network 192.168.3.0
        broadcast 192.168.3.255
        gateway 192.168.3.1
        # dns-* options are implemented by the resolvconf package, if installed
        dns-nameservers 192.153.157.142
        dns-search chara-array.org
 
if you want to work remotely install ssh server
aptitude install openssh-server
 
aptitude search package will search a package in the debian archive.
 
Once installation finished create a file called  preference in /etc/apt
 
Package: *
Pin: release a=stable
Pin-Priority: 700
 
Package: *
Pin: release a=testing
Pin-Priority: 650
 
Package: *
Pin: release a=unstable
Pin-Priority: 600
 
Then modify /etc/apt/sources.list to look like this:
 
#
# deb cdrom:[Debian GNU/Linux 5.0.2 _Lenny_ - Official i386 NETINST Binary-1 20090629-11:06]/ lenny main
 
#deb cdrom:[Debian GNU/Linux 5.0.2 _Lenny_ - Official i386 NETINST Binary-1 20090629-11:06]/ lenny main
 
#stable
deb http://linux.csua.berkeley.edu/debian/ lenny main non-free contrib
deb-src http://linux.csua.berkeley.edu/debian/ lenny main non-free contrib
deb http://security.debian.org/ lenny/updates main non-free contrib
deb-src http://security.debian.org/ lenny/updates main non-free contrib
deb http://volatile.debian.org/debian-volatile lenny/volatile main non-free contrib
deb-src http://volatile.debian.org/debian-volatile lenny/volatile main non-free contrib
 
#testing
deb http://ftp.us.debian.org/debian testing main non-free contrib
deb-src http://ftp.us.debian.org/debian testing main non-free contrib
 
#unstable
deb http://ftp.us.debian.org/debian unstable main non-free contrib
deb-src http://ftp.us.debian.org/debian unstable main non-free contrib
 
aptitude update
aptitude safe-upgrade
aptitude full-upgrade
 
if you get this:
E: Dynamic MMap ran out of room
 
Add the following line to /etc/apt/apt.conf
 
APT::Cache-Limit "8388608";
 
 
You will be on debian STABLE. you can install packages from testing or unstable by typing:
 
aptitude install <package> /unstable
(or /testing)
 
 
Install screen (useful when compiling remotely if ssh connection dies)
 
aptitude install screen
 
run screen
 
Now install the latest xenomai
 
cd /usr/src
 
Install the packages necessary to compile the kernel.
aptitude install kernel-package ncurses-dev fakeroot bzip2
 
Install package to retrieve latest stable xenomai from the git repository 
aptitude install git-buildpackage
aptitude install pbuilder
 
Using new howto on: http://www.xenomai.org/index.php/Building_Debian_packages
 
aptitude install devscripts debhelper dh-kpatches findutils
 
rom a Git repository
 
To build from a git Repository install these additional packages and clone the Git repository:
 
# apt-get install git-core git-buildpackage
# cd /usr/src
$ git clone git://xenomai.org/xenomai-2.5.git
 
Change to the Xenomai Git working tree and update the repository:
 
$ cd xenomai-2.5 && git fetch origin
 
Create and checkout a new branch based on a git treeish object. In this example, we create a branch v2.5.3-deb based on git tag v2.5.3:
 
xenomai-2.5$ git checkout -b v2.5.3-deb v2.5.3
 
Create a new debian changelog entry:
 
xenomai-2.5$ DEBEMAIL="your@email" DEBFULLNAME="Your Name" debchange -v 2.5.3-0.1 Release 2.5.3
 
Commit the changelog to the v2.5.3-deb branch:
 
xenomai-2.5$ git commit -a --author="Your Name <your@email>" -m 2.5.3-0.1
 
Build the packages in the parent directory:
 
xenomai-2.5$ git-buildpackage \
--git-upstream-branch=v2.5.3 \
--git-debian-branch=v2.5.3-deb \
--git-export-dir=.. \
-uc -us
 
Switch back to the master branch and delete the branch v2.5.3-deb:
 
xenomai-2.5$ git checkout master && git branch -D v2.5.3-deb
 
use dpkg to install the packages:
 
# dpkg -i *.deb
 
dpkg-query -W -f'${Description}\n' linux-patch-xenomai | grep Patch-file
 
Apply the Xenomai adeos-ipipe patch and compile kernel:
 
tar -jxf linux-2.6.32.11.tar.bz2 && cd linux-2.6.32.11
 
remember to copy to this directory the .config file used in the previous kernel
cp /boot/config-2.6.32.11-xenomai-2.5.3 .config (note: this file  could be called differently).
 
since we copied the old .config file we can use --config oldconfig
if you want to edit the kernel configuration use --config menuconfig (NEVER edit .config manually).
 
Compile and patch the kernel:
 
CONCURRENCY_LEVEL=2 fakeroot make-kpkg --initrd --added-patches xenomai --append-to-version -xenomai-2.5.3 --revision 1.0 --config oldconfig binary-arch
 
If you need to recompile the kernel additional times, avoid reapplying the xenomai patch:
 
CONCURRENCY_LEVEL=2 fakeroot make-kpkg --initrd --revision=ipipe.2.0.05  binary-arch
 
install the kernel
 
dpkg -i linux-image-2.6.31.1_ipipe.2.0.05_i386.deb
 
modify /boot/grub/menu.lst
root= should not use the device (/dev/sda1) since that may change. Use the UUID (obtained typing blkid) or the label of the disc
 
Also append "noht mem=2048M memmap=1024M" to the real time kernel using the asgtropci board.
 
install kernel and headers
dpkg -i linux-image*.deb
 
emacs /boot/grub/menu.lst
 
title          Debian GNU/Linux, kernel 2.6.32.11-xenomai-2.5.3
root            (hd0,0)
kernel          /boot/vmlinuz-2.6.32.11-xenomai-2.5.3 root=LABEL=ROOTFS_TEST ro noht mem=2048M memmap=1024M pci=routeirq
initrd          /boot/initrd.img-2.6.32.11-xenomai-2.5.3
 
title          Debian GNU/Linux, kernel 2.6.32.11-xenomai-2.5.3 (single-user mode)
root            (hd0,0)
kernel          /boot/vmlinuz-2.6.32.11-xenomai-2.5.3 root=LABEL=ROOTFS_TEST ro single
initrd          /boot/initrd.img-2.6.32.11-xenomai-2.5.3
 
title          Debian GNU/Linux, kernel 2.6.26-2-686
root            (hd0,0)
kernel          /boot/vmlinuz-2.6.26-2-686 root=LABEL=ROOTFS_TEST ro quiet
initrd          /boot/initrd.img-2.6.26-2-686
 
Also modify /etc/fstab to use UUID or LABEL instead of devices. Label names have to be unique:
 
# /etc/fstab: static file system information.
#
# <file system>        <mount point>  <type>          <options>              <dump>  <pass>
proc                    /proc          proc            defaults                0      0
LABEL=ROOTFS-XENO      /              ext3            errors=remount-ro      0      1
LABEL=SWAP-XENO        none            swap            sw                      0      0
/dev/scd0              /media/cdrom0  udf,iso9660    user,noauto            0      0
/dev/fd0                /media/floppy0  auto            rw,user,noauto          0      0
 
Modify /etc/modules to look like this:
 
# /etc/modules: kernel modules to load at boot time.
#
# This file contains the names of kernel modules that should be loaded
# at boot time, one per line. Lines beginning with "#" are ignored.
# Parameters can be specified after the module name.
 
loop
xeno_native
xeno_rtdm
 
In this way the xenomai modules are loaded at boot time.
 
and reboot
 
Type lsmod to see the kernel modules loaded.
It should show:
 
Module                  Size  Used by
xeno_native          105088  0
analogy_ni_pcimio      15644  0
analogy_ni_mio        44860  1 analogy_ni_pcimio
analogy_ni_tio        24956  1 analogy_ni_mio
analogy_8255            3900  1 analogy_ni_mio
analogy_ni_mite        10140  3 analogy_ni_pcimio,analogy_ni_mio,analogy_ni_tio
xeno_analogy          40220  5 analogy_ni_pcimio,analogy_ni_mio,analogy_ni_tio,analogy_8255,analogy_ni_mite
xeno_rtdm              28436  2 analogy_ni_mio,xeno_analogy
ext3                  109636  1
jbd                    43920  1 ext3
mbcache                6272  1 ext3
ide_pci_generic        3712  0
ide_core              74204  1 ide_pci_generic
ata_piix              15748  2
sata_mv                26448  0
e1000                114208  0
libata                142156  2 ata_piix,sata_mv
unix                  22992  10
 
all the analogy drives are the real-time comedi drivers (not present in mirkwood).
 
Obtain the astropci driver from the Bob Leach site. For kernel 2.6.30 is astropciFC11.tar.bz2.
 
tar xjf astropciFC11.tar.bz2
cd /usr/src/astropci/FC11/
make default
make install
 
reboot
 
Now with lsmod you should see an extra module:
astropci              10944  0
 
I have not figured out how to create the node /dev/astropci automatically.
 
execute this command to create the node:
 
astropci_make_node
 
you can test the RTOS with xeno-test
 
xeno-test was  broken but I fixed it doing the following links:
 
ln -s /usr/lib/xenomai/clocktest /usr/bin/clocktest
ln -s /usr/lib/xenomai/cyclictest /usr/bin/cyclictest
ln -s /usr/lib/xenomai/irqloop /usr/bin/irqloop
ln -s /usr/lib/xenomai/klatency /usr/bin/klatency
ln -s /usr/lib/xenomai/latency /usr/bin/latency
ln -s /usr/lib/xenomai/sigtest /usr/bin/sigtest
ln -s /usr/lib/xenomai/switchtest /usr/bin/switchtest
ln -s /usr/lib/xenomai/unit /usr/bin/unit
 
Install CVS and SVN to retrieve MIRC anc CHAMP trees.
 
aptitude install cvs subversion
 
Now test compile of old mirkwood code
 
install dependencies
 
aptitude install fftw3
aptitude install fftw3-dev
aptitude install fftw3-doc
 
 
---+++ RTNET
Building RTNET
 
Download git tree in /usr/src/
 
git clone git://rtnet.git.sourceforge.net/gitroot/rtnet/rtnet
 
Change name of directory to a tag name (otherwise dhmake refuses to write debian info to dir)
 
mv rtnet rtnet-0.9.11
 
Install the package dh_make
 
aptitude install dh-make
 
cd rtnet-0.9.11/
 
dh_make --createorig
 
Type of package: single binary, multiple binary, library, kernel module or cdbs?
  [s/m/l/k/b] b
 
Maintainer name : root
Email-Address  : root@fangorn.chara-array.org
Date            : Fri, 27 Nov 2009 03:15:25 -0800
Package Name    : rtnet
Version        : 0.9.11
License        : blank
Using dpatch    : no
Type of Package : cdbs
Hit <enter> to confirm:
Done. Please edit the files in the debian/ subdirectory now. rtnet
uses a configure script, so you probably don't have to edit the Makefiles.
fangorn:/usr/src/rtnet-0.9.11# git clone git://rtnet.git.sourceforge.net/gitroot/rtnet/rtnet
Initialized empty Git repository in /usr/src/rtnet-0.9.11/rtnet/.git/
 
'b' option worked when I compiled the package.
 
Need to run this script for building dependencies:
/usr/lib/pbuilder/pbuilder-satisfydepends
 
Then run:
 
git-buildpackage -us -uc -rfakeroot --git-debian-branch=master --git-upstream-branch=origin/master --git-ignore-new
 
The following packages are created:
 
rtnet_0.9.11-1.diff.gz rtnet_0.9.11-1.dsc  rtnet_0.9.11-1_i386.build  rtnet_0.9.11-1_i386.changes  rtnet_0.9.11-1_i386.deb  rtnet_0.9.11.orig.tar.gz
 
install debian package:
 
dpkg -i rtnet_0.9.11-1_i386.deb
 
edit /etc/rtnet.conf
 
need to change:
 
RT_DRIVER="rt_e1000"          #driver for our intel chipset
RT_DRIVER_OPTIONS="cards=0,1"  #This loads RT driver for eth1
 
IPADDR="10.0.0.10"           
 
# Simple setup: List of TDMA slaves
TDMA_SLAVES="10.0.0.9"        # this is the VME address (could add mirkwood too as 10.0.0.8)
 
To test RTNET do the following
 
Shutdown network interface/s
 
ifdown eth0
 
remove standard network driver for ethernet cards:
modprobe -r e1000
 
start rtnet:
 
rtnet start
 
add a route to the VME CPU
 
rtroute add 10.0.0.9 00:01:af:17:a4:53 dev rteth0
 
reinsert non-RT ethernet driver
 
modprobe e1000
 
Test connection:
 
rtping 10.0.0.9
 
---+++ Analogy (comedi)
 
Example programme:
 
/**
* @file
* Analogy for Linux, output command test program
*
* @note Copyright (C) 1997-2000 David A. Schleef <ds@schleef.org>
* @note Copyright (C) 2008 Alexis Berlemont <alexis.berlemont@free.fr>
*
* Xenomai is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Xenomai is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Xenomai; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
 
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <errno.h>
#include <getopt.h>
#include <string.h>
 
#include <native/task.h>
 
#include <analogy/analogy.h>
 
/* Default command's parameters */
 
/* For write operation, we consider
  the default subdevice index is 1 */
#define ID_SUBD 1
/* For simplicity sake, a maximum channel
  count is defined */
#define MAX_NB_CHAN 10
/* Four channels used by default */
#define NB_CHAN 4
/* One hundred triggered scans by default */
#define NB_SCAN 100
 
#define FILENAME "analogy0"
 
#define BUF_SIZE 10000
 
static unsigned char buf[BUF_SIZE];
static char *filename = FILENAME;
static char *str_chans = "0,1";
static unsigned int chans[MAX_NB_CHAN];
static int verbose = 0;
static int real_time = 0;
static int use_mmap = 0;
 
static RT_TASK rt_task_desc;
 
/* The command to send by default */
a4l_cmd_t cmd = {
  .idx_subd = ID_SUBD,
  .flags = 0,
  .start_src = TRIG_INT,
  .start_arg = 0,
  .scan_begin_src = TRIG_TIMER,
  .scan_begin_arg = 2000000, /* in ns */
  .convert_src = TRIG_NOW,
  .convert_arg = 0, /* in ns */
  .scan_end_src = TRIG_COUNT,
  .scan_end_arg = 0,
  .stop_src = TRIG_COUNT,
  .stop_arg = NB_SCAN,
  .nb_chan = 0,
  .chan_descs = chans,
};
 
a4l_insn_t insn = {
  .type = A4L_INSN_INTTRIG,
  .idx_subd = ID_SUBD,
  .data_size = 0,
};
 
struct option cmd_write_opts[] = {
  {"verbose", no_argument, NULL, 'v'},
  {"real-time", no_argument, NULL, 'r'},
  {"device", required_argument, NULL, 'd'},
  {"subdevice", required_argument, NULL, 's'},
  {"scan-count", required_argument, NULL, 'S'},
  {"channels", required_argument, NULL, 'c'},
  {"mmap", no_argument, NULL, 'm'},
  {"help", no_argument, NULL, 'h'},
  {0},
};
 
void do_print_usage(void)
{
  fprintf(stdout, "usage:\tcmd_write [OPTS]\n");
  fprintf(stdout, "\tOPTS:\t -v, --verbose: verbose output\n");
  fprintf(stdout,
  "\t\t -d, --device: "
  "device filename (analogy0, analogy1, ...)\n");
  fprintf(stdout, "\t\t -s, --subdevice: subdevice index\n");
  fprintf(stdout, "\t\t -S, --scan-count: count of scan to perform\n");
  fprintf(stdout, "\t\t -c, --channels: channels to use (ex.: -c 0,1)\n");
  fprintf(stdout, "\t\t -m, --mmap: mmap the buffer\n");
  fprintf(stdout, "\t\t -h, --help: print this help\n");
}
 
int main(int argc, char *argv[])
{
  int ret = 0, len, ofs;
  unsigned int i, scan_size = 0, cnt = 0;
  unsigned long buf_size;
  void *map = NULL;
  a4l_desc_t dsc = { .sbdata = NULL };
 
  /* Compute arguments */
  while ((ret = getopt_long(argc,
    argv,
    "vrd:s:S:c:mh", cmd_write_opts, NULL)) >= 0) {
    switch (ret) {
    case 'v':
      verbose = 1;
      break;
    case 'r':
      real_time = 1;
      break;
    case 'd':
      filename = optarg;
      break;
    case 's':
      cmd.idx_subd = insn.idx_subd = strtoul(optarg, NULL, 0);
      break;
    case 'S':
      cmd.stop_arg = strtoul(optarg, NULL, 0);
      break;
    case 'c':
      str_chans = optarg;
      break;
    case 'm':
      use_mmap = 1;
      break;
    case 'h':
    default:
      do_print_usage();
    return 0;
    }
  }
 
  /* Recover the channels to compute */
  do {
    cmd.nb_chan++;
    len = strlen(str_chans);
    ofs = strcspn(str_chans, ",");
    if (sscanf(str_chans, "%u", &chans[cmd.nb_chan - 1]) == 0) {
      fprintf(stderr, "cmd_write: bad channels argument\n");
      return -EINVAL;
    }
    str_chans += ofs + 1;
  } while (len != ofs);
 
  /* Update the command structure */
  cmd.scan_end_arg = cmd.nb_chan;
 
  if (real_time != 0) {
 
    if (verbose != 0)
      printf("cmd_write: switching to real-time mode\n");
 
    /* Prevent any memory-swapping for this program */
    ret = mlockall(MCL_CURRENT | MCL_FUTURE);
    if (ret < 0) {
      ret = errno;
      fprintf(stderr, "cmd_write: mlockall failed (ret=%d)\n",
      ret);
      goto out_main;
    }
 
    /* Turn the current process into an RT task */
    ret = rt_task_shadow(&rt_task_desc, NULL, 1, 0);
    if (ret < 0) {
      fprintf(stderr,
      "cmd_write: rt_task_shadow failed (ret=%d)\n",
      ret);
      goto out_main;
    }
  }
 
  /* Open the device */
  ret = a4l_open(&dsc, filename);
  if (ret < 0) {
    fprintf(stderr,
    "cmd_write: a4l_open %s failed (ret=%d)\n",
    FILENAME, ret);
    return ret;
  }
 
  if (verbose != 0) {
    printf("cmd_write: device %s opened (fd=%d)\n",
  filename, dsc.fd);
    printf("cmd_write: basic descriptor retrieved\n");
    printf("\t subdevices count = %d\n", dsc.nb_subd);
    printf("\t read subdevice index = %d\n", dsc.idx_read_subd);
    printf("\t write subdevice index = %d\n", dsc.idx_write_subd);
  }
 
  /* Allocate a buffer so as to get more info (subd, chan, rng) */
  dsc.sbdata = malloc(dsc.sbsize);
  if (dsc.sbdata == NULL) {
    fprintf(stderr, "cmd_write: malloc failed \n");
    return -ENOMEM;
  }
 
  /* Get this data */
  ret = a4l_fill_desc(&dsc);
  if (ret < 0) {
    fprintf(stderr,
    "cmd_write: a4l_get_desc failed (ret=%d)\n", ret);
    goto out_main;
  }
 
  if (verbose != 0)
    printf("cmd_write: complex descriptor retrieved\n");
 
  /* Get the size of a single acquisition */
  for (i = 0; i < cmd.nb_chan; i++) {
    a4l_chinfo_t *info;
 
    ret = a4l_get_chinfo(&dsc,
cmd.idx_subd, cmd.chan_descs[i], &info);
    if (ret < 0) {
      fprintf(stderr,
      "cmd_write: a4l_get_chinfo failed (ret=%d)\n",
      ret);
      goto out_main;
    }
 
    if (verbose != 0) {
      printf("cmd_write: channel %x\n", cmd.chan_descs[i]);
      printf("\t ranges count = %d\n", info->nb_rng);
      printf("\t range's size = %d (bits)\n", info->nb_bits);
    }
 
    scan_size += (info->nb_bits % 8 == 0) ?
      info->nb_bits / 8 : (info->nb_bits / 8) + 1;
  }
 
  if (verbose != 0) {
    printf("cmd_write: scan size = %u\n", scan_size);
    printf("cmd_write: size to write  = %u\n",
  scan_size * cmd.stop_arg);
  }
 
  /* Cancel any former command which might be in progress */
  a4l_snd_cancel(&dsc, cmd.idx_subd);
 
  if (use_mmap != 0) {
 
    /* Get the buffer size to map */
    ret = a4l_get_bufsize(&dsc, cmd.idx_subd, &buf_size);
    if (ret < 0) {
      fprintf(stderr,
      "cmd_write: a4l_get_bufsize() failed "
      "(ret=%d)\n", ret);
      goto out_main;
    }
 
    if (verbose != 0)
      printf("cmd_write: buffer size = %lu bytes\n",
    buf_size);
 
    /* Map the analog input subdevice buffer */
    ret = a4l_mmap(&dsc, cmd.idx_subd, buf_size, &map);
    if (ret < 0) {
      fprintf(stderr,
      "cmd_write: a4l_mmap() failed (ret=%d)\n",
      ret);
      goto out_main;
    }
 
    if (verbose != 0)
      printf("cmd_write: mmap performed successfully "
    "(map=0x%p)\n", map);
  }
 
  /* Send the command to the output device */
  ret = a4l_snd_command(&dsc, &cmd);
  if (ret < 0) {
    fprintf(stderr,
    "cmd_write: a4l_snd_command failed (ret=%d)\n", ret);
    goto out_main;
  }
 
  if (verbose != 0)
    printf("cmd_write: command successfully sent\n");
 
  /* Set up the buffer to be written */
  for (i = 0; i < BUF_SIZE; i++)
    buf[i] = i;
 
  if (use_mmap == 0) {
 
    /* Send data */
    while (cnt < scan_size * cmd.stop_arg) {
      unsigned int tmp =
(scan_size * cmd.stop_arg - cnt) > BUF_SIZE ?
BUF_SIZE : (scan_size * cmd.stop_arg - cnt);
 
      ret = a4l_async_write(&dsc, buf, tmp, A4L_INFINITE);
      if (ret < 0) {
fprintf(stderr,
"cmd_write: a4l_write failed (ret=%d)\n",
ret);
goto out_main;
      }
      cnt += ret;
 
      if (cnt == ret && cnt != 0) {
ret = a4l_snd_insn(&dsc, &insn);
if (ret < 0) {
  fprintf(stderr,
  "cmd_write: triggering failed (ret=%d)\n",
  ret);
  goto out_main;
}
      }
    }
  } else {
    unsigned long front = 0;
 
    /* Send data through the shared buffer */
    while (cnt < cmd.stop_arg * scan_size) {
 
      /* If the buffer is full, wait for an event
(Note that a4l_poll() also retrieves the data amount
to read; in our case it is useless as we have to update
the data read counter) */
      if (front == 0) {
ret = a4l_poll(&dsc, cmd.idx_subd, A4L_INFINITE);
if (ret < 0) {
  fprintf(stderr,
  "cmd_write: a4l_mark_bufrw() failed (ret=%d)\n",
  ret);
  goto out_main;
} else
  front = (unsigned long)ret;
      }
 
      /* Update the variable front according to the data amount
we still have to send */
      if (front > (scan_size * cmd.stop_arg - cnt))
front = scan_size * cmd.stop_arg - cnt;
 
      /* Perform the copy
(Usually, such an operation should be avoided: the shared
buffer should be used without any intermediate buffer,
the "mmaped" buffer is interesting for saving data copy) */
      memcpy(map + (cnt % buf_size),
    buf + (cnt % BUF_SIZE), front);
 
      /* Update the counter */
      cnt += front;
 
      /* Retrieve and update the buffer's state
(In output case, we recover how many bytes can be
written into the shared buffer) */
      ret = a4l_mark_bufrw(&dsc, cmd.idx_subd, front, &front);
      if (ret < 0) {
fprintf(stderr,
"cmd_write: a4l_mark_bufrw() failed (ret=%d)\n",
ret);
goto out_main;
      }
      if (cnt == front && cnt != 0) {
ret = a4l_snd_insn(&dsc, &insn);
if (ret < 0) {
  fprintf(stderr,
  "cmd_write: triggering failed (ret=%d)\n",
  ret);
  goto out_main;
}
      }
    }
  }
 
  if (verbose != 0)
    printf("cmd_write: %d bytes successfully written\n", cnt);
 
  ret = 0;
 
out_main:
 
  /* Free the buffer used as device descriptor */
  if (dsc.sbdata != NULL)
    free(dsc.sbdata);
 
  /* Release the file descriptor */
  a4l_close(&dsc);
 
  return ret;
}
 
Makefile for programme:
 
CC = $(shell /usr/bin/xeno-config --cc)
LXRT_CFLAGS = $(shell /usr/bin/xeno-config --skin=native --cflags) 
LXRT_LDFLAGS = $(shell /usr/bin/xeno-config --skin=native --ldflags)
EXTRA_LDFLAGS = -lanalogy -lrtdm
OBJ = cmd_write
SRC    :=  $(OBJ).c
 
all: $(OBJ)
 
$(OBJ): $(SRC)
$(CC) $(SRC) $(LXRT_CFLAGS) $(LXRT_LDFLAGS) $(EXTRA_LDFLAGS) -o $(OBJ)
 
clean:
rm -fr *.mod.c *.o *.ko $(OBJ) *~ .$(OBJ) .tmp_versions
 
install:
install -m 0755 $(OBJ) /usr/local/bin
 
.PHONY: clean





Revision as of 14:38, 2 June 2010

Manual for the CHARA-Michigan Phasetracker*

  • CHAMP*


%TOC% Bold text ---+ Overview

---+ Quick Startup Guide

---+ Alignment ---++ Nightly Alignment ---++ Full Alignment

---+ Hardware Subsystems ---++ Overview ---++ Dichroic Pickoffs

---+ Real-time system Click here for detail on the upgrade to the realtime system RT_System


We have provided 3 sets of pickoff optics for use with CHAMP (the angle-of-incidence is 3 degrees). Each is designed with a 30' wedge and have been oriented with thick part down (i.e., transmitted beams is bent downward by 13.7', which may be relevant for downstream combiners during alignment procedure). All substrates have a broadband AR coating on the back-surface and the reflected light comes primarily from the front surface.


  * Short-wave Pass (SWP): 

These IR-grade Fused Silica substrates are coated with a dichroic coating to reflect K' band (2-2.3 microns) and to transmit JH bands (1.1-1.8 microns).

%BR%

  * Long-wave Pass (LWP):

These Calcium Fluoride substrates are coated with a dichroic coating to reflect JH bands (1.1-1.8 microns) and to transmit K' band (2-2.3 microns and longer for possible future experiments).

%BR%

  * Pickoffs Beam-splitters (BS):

These Calcium Fluoride beamsplitters were rejected from American Torch due to the coating not meeting specifications and the performance curves being proven unreliable. We believe the the coatings are about 50/50 at HK bands but are more like 75/25 (mostly transmitting) at J and beyond K band. This might prove useful in the future, but we do not expect these pickoff optics to be the best choice for most observers. Here is a measured transmission curve from the company, although we have not verified the accuracy yet:

%BR%

---++ Piezo Scanners Piezojena 8micron Hardware card from National Instruments

---++ Beamsplitters

The IR-grade Fused silica beamsplitters are 50% +/- 10% over the full JHK' bandpasses. The coatings were done by Omega Optical and you can find the coating performance here. The angle of incidence is ~11.5 degrees.

%BR% ---++ Towers of Power ---++ Image Slicers ---++ CHAMP Dewar ---++ Filterset ---++ Triplet ---++ HAWAII-1 Detector

---+ Software ---++ Interface Computer (wolverine) ---+++ CHAMP control ---+++ Actuators ---++ Realtime Computer (champ) ---+++ Camera Readout ---+++ Piezo control ---+++ Delay line communication

---+ Appendices

---++ Diagrams

targets filter box diagram filterwheel key


---++ Spares

Optics

  • Two (2) fused silica beam splitters for CHAMP combiner
  • One (1) fused silica short-wave pass (SWP) dichroic pickoff
  • One (1) calcium fluoride long-wave page (LWP) dichroic pickoff
  • One (1) elliptical mirror mounted to invar piezo mount
  • Four (4) f=450mm spherical mirrors for Tower of Power
  • One (1) image slicer T1
  • One (1) image slicer T2
  • One (1) image slicer B1 [note: we are using the spare. the original B1 has some coating problems near apex and is put back as a backup/spare
  • One (1) image slicer B2 [note: the backup spare B2 has slight problem where the bottom-right quad, B2d, is too large in one dimension. This means the pyramid will not fit in the holder. If one needs to use this backup, one will need to mill-out extra clearance in the holder]


Other things: TBDocumented, some card for camera electronics. zabar motors.

  • One (1) motherboard for servers (compatible with mirkwood, champ -- one kept at CHARA, one at UM)

-- Main.monnier - 08 Feb 2009