Commanding picomotors with a python script

Jean-Philippe Berger
August 9, 2005

1 Setup

This documents describes how to control the picomotors used for alignment
purposes on the MIRC combiner.

The equipment in use is the Model 8750 “Intelligent Picomotor Network
Controller” (NC) and the Model 8753 picomotor driver which can open-loop
drive up to 3 motors. The newtwork controller is accessible via telnet provided
it has a valid IP address. It has its own machine language called called MCL.

Drivers are ethernet and power daisy chained to the Network controller

To setup things do the following:

1. connect the different elements together and the NC to the network;

2. get a valid IP /host address. For that you need to communicate the system
admnin a MAC address. This is easely done bye issuing the following
command with the hand terminal (connected to the NC) who understands
MCL commands.

> MACADRR

3. once connected you can check the IP adress by issuing the following com-
mand

> IPADDR

2 Sending commands

Sending commands require to use the hand terminal or a telnet connection. In
telnet mode you need to telnet the ethernet controller.

telnet monnierpicol.astro.lsa.umich.edu

The prompt is a “>” and you can enter MCL commands directly
There are examples in the manual: MCL commands and examples (p61-100)
A summary of the commands can be found p57 to 59

2.1 Low level commands

I have written a PicoControl python class that defines low level python com-
mands which are almost direct images of MCL commands. The main issue I
had to deal with (thanks John) was to introduce a time-out pause between each
telnet command inside the python commands.

The following table summarizes them.

Description Python function Comments
Move to a relative position by MoveRelative(driver,motor,steps)

Change speed of one motor SetVelocity(driver,motor,vel)

Change acceleration of one motor SetAcceleration(driver,motor,acc)

Check one motor speed ReadVelocity (driver,motor)

Check one motor acceleration ReadAcceleration(driver,motor)

Checked plugged-in drivers CheckDrivers() Flaky
Stop all motors StopMotors()

3 A typical interactive sequence.

Drivers are daisy chained to the NC. The first one (the one that is directlyl
connected to the NC) carries the name “al” in the MCL language terminology
the other ones “a2” ... and so on. The three motors on each driver are designated
with a number (1,2,3).

Let’s set velocity of motor 2 connected to driver a2 to 1000 Hz (and check it
has been correctly set) and moving it by 200000 steps then stopping it while its
moving.

prompt % python

>>> import picoLowLevel as pic
>>> pc = pic.PicoControl()

>>> pc.SetVelocity("a2",2,1000)
>>> pc.ReadVelocity("a2",2)

>>> pc.MoveRelative("a2",2,200000)

>>> pc.StopMotors()

4 The python code

For the record your can directly access the MCL terminal from a python interac-
tive section by opening a telnet session using telnelib class. telnelib.Telnet(HOST).interact()

import getpass
import sys
import telnetlib
import time

class PicoControl:

def __init__(self):
self .HOST = "monnierpicol.astro.lsa.umich.edu"
self.timing=0.2 # sleeping time (in s) required for telnet communication
self.tn = telnetlib.Telnet(self.HOST)
self.sl = time.sleep

def MoveRelative(self,driver,motor,steps):

print "Moving motor "+str(motor)+" on driver "+driver+" by "\
+str(steps)+" steps"

self.tn.write("chl "+driver+"="+str(motor)+"\n")
self.sl(self.timing)

self.tn.write("rel "+driver+"="+str(steps)+"\n")
self.sl(self.timing)

self.tn.write("go\n")

self.sl(self.timing)

def SetVelocity(self,driver,motor,vel):
Set velocity in Hz
Value: 1 to 2000
print "Set velocity of motor "+str(motor)+" on driver "+driver+" to "\
+str(vel)+" Hz"
self.tn.write("vel "+driver+" "+str(motor)+"="+str(vel)+"\n")

def SetAcceleration(self,driver,motor,acc):
Set acceleration in steps/s”2
Value: 16-20,000
print "Set acceleration of motor "+str(motor)+" on driver "+driver+" to "\
+str(acc)+" steps/s”2"
self.tn.write("acc "+driver+" "+str(motor)+"="+str(acc)+"\n")

def StopMotors(self):

print "Stopping all active motors"
self.tn.write("hal\n")

def ReadVelocity(self,driver,motor):

flush=self.tn.read_very_eager()

self.sl(self.timing)

self.tn.write("vel "+driver+"="+str(motor)+"\n")

self.sl(self.timing)

vel=self.tn.read_very_eager()

print "Velocity of motor "+str(motor)+" on driver "+driver+" is "+vel.split() [1][3::
return vel.split() [1][3:]

def ReadAcceleration(self,driver,motor):

flush=self.tn.read_very_eager()

self.sl(self.timing)

self.tn.write("acc "+driver+"="+str(motor)+"\n")

self.sl(self.timing)

acc=self.tn.read_very_eager()

print "Acceleration of motor "+str(motor)+" on driver "+driver+" is "+acc.split() [1:
return acc.split() [1][3:]

def CheckDrivers(self):

flush=self.tn.read_very_eager()

self.sl(self.timing)

self.tn.write("drt\n")

self.sl(self.timing)

dri=self.tn.read_eager()

print str(len(dri.split())-1)+ " drivers are connected."
def __del__(self):

self.tn.close()

