
Users · Developers · ViewCVS · FTP · Bugzilla · FAQ · Contact

FAQ Index - Search - Recent Changes - Everything - Add entry

<< Previous Entry | FAQ Entry 20.6 | Next Entry >>

20.6. I am using a separate thread to run my code, but the application
(or the UI) hangs.

There are a couple of  hitches you can run into when trying to use threading and
PyGTK together.  For starters,  if  you are using threads, no matter if  you are doing
PyGTK calls from a separate thread or not, you must compile PyGTK with --enable-
threads.

Now there are two approaches for threads in PyGTK:

1. Allow only the main thread to touch the GUI (gtk) part, while letting other threads do
background work. For this to work, first call

  gobject.threads_init()

at applicaiton initialization. Then you launch your threads normally, but make sure the
threads never do any GUI tasks directly. Instead, you use gobject.idle_add to schedule
GUI task to executed in the main thread. Example:

 import threading
 import time
 import gobject
 import gtk

 gobject.threads_init()

 class MyThread(threading.Thread):
     def __init__(self, label):
         super(MyThread, self).__init__()
         self.label = label
         self.quit = False

     def update_label(self, counter):
         self.label.set_text("Counter: %i" % counter)
         return False

     def run(self):
         counter = 0
         while not self.quit:
             counter += 1
             gobject.idle_add(self.update_label, counter)
             time.sleep(0.1)

 w = gtk.Window()
 l = gtk.Label()
 w.add(l)
 w.show_all()



 w.connect("destroy", lambda _: gtk.main_quit())
 t = MyThread(l)
 t.start()

 gtk.main()
 t.quit = True

2. Allow any thread to do GUI stuff. Warning: people doing win32 pygtk programming
have said that having non-main threads doing GUI stuff in win32 doesn't work. So this
programming style is really not recommended.

Anyway, to make this work, start by calling:

 gtk.gdk.threads_init()

at startup. Failing to do this will make PyGTK never release the python threading lock.
At least Debian's packages are compiled properly, so it's a matter of using that call.

Then you have to wrap your main loop with gtk.threads_enter()/gtk.threads_leave(),
like this:

 gtk.threads_enter()
 gtk.main()
 gtk.threads_leave()

Your  threads  code  must,  before  touching  any  gtk  functions  or  widgets,  call
gtk.threads_enter(), and after gtk.threads_leave(), for example:

  ...
  gtk.threads_enter()
  try:
      myentry.set_text("foo")
  finally:
      gtk.threads_leave()
  ...

Also, keep in mind that signal handlers don't need gtk.threads_enter/leave(). There are
other concerns, see [developer.gnome.org] .

Cedric Gustin posted a short example of threaded code at [www.daa.com.au] -- it's a
good building block for a more complex threaded application.

Finally, if you are writing a C extension module, remember that you need to protect
calls  that  potentially  lock  the  thread  with  Py_BEGIN_ALLOW_THREADS  and
Py_END_ALLOW_THREADS.

Edit  this  entry  /  Log  info  /  Last  changed  on  Mon  Aug  29  14:48:07  2005  by  Gustavo  Carneiro
(gjc@inescporto.pt)

PyGTK FAQ Wizard | PyGTK Homepage | Feedback to faq at pygtk.org


