
The spectrograph doublet is based on a standard "crown in front" design. The crown glass (higher Abe number) is IR grade calcium fluoride, the flint glass is IR grade fused silica.

| Glass       | $n_1 @ 1.25 \mu m$ | $n_2 @ 1.65 \mu m$ | n <sub>3</sub> @ 2.20μm | v (Abe number) | P (Partial dispersion) |
|-------------|--------------------|--------------------|-------------------------|----------------|------------------------|
| IR F-Silica | 1.44748            | 1.44280            | 1.43501                 | 35.5110        | 0.6246                 |
| IR CaF2     | 1.42746            | 1.42556            | 1.42280                 | 91.4696        | 0.5907                 |

With: 
$$v = \frac{n_2 - 1}{n_1 - n_3}$$
 and  $P = \frac{n_2 - n_3}{n_1 - n_3}$ .



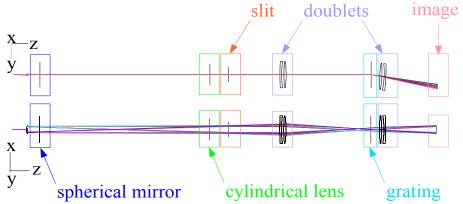
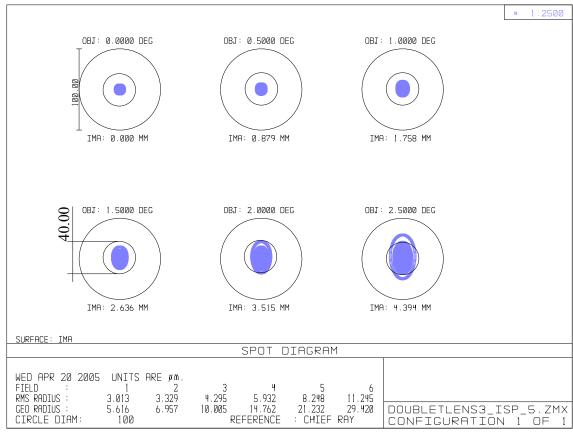
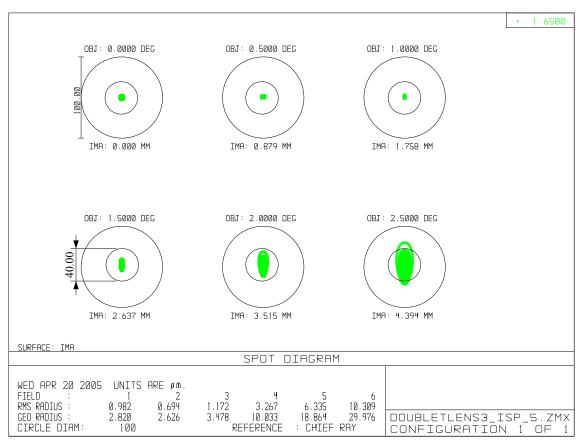
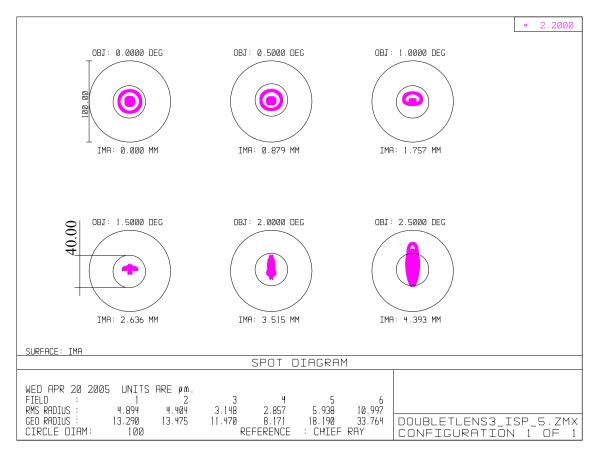
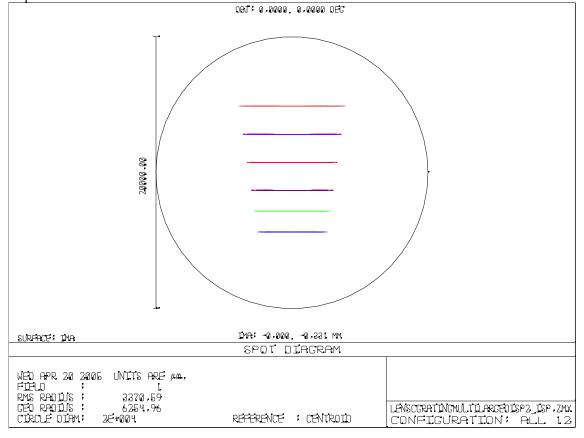






Figure 1Top and side view of a sequential zemax model of the spectrograph.


Spot diagrams: Doublet only; field: 0-2.5degrees; wavelengths: 1.25, 1.65, 2.2microns.








Spot diagrams: sequential model of the spectrograph; small dispersion; wavelengths: 1.5, 1.65, 1.8, 2.0 2.2, 2.4microns from bottom to top.



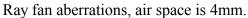
Spot diagrams: sequential model of the spectrograph; large dispersion; wavelengths: 1.5, 1.65, 1.8, 2.0 2.2, 2.4microns from

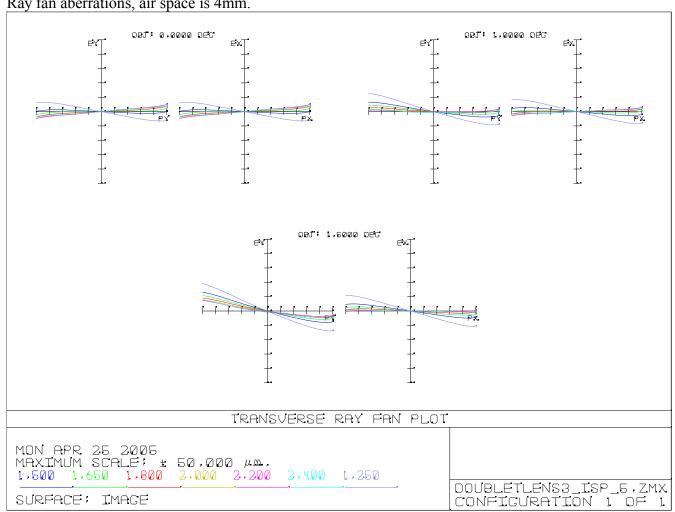
bottom to top.



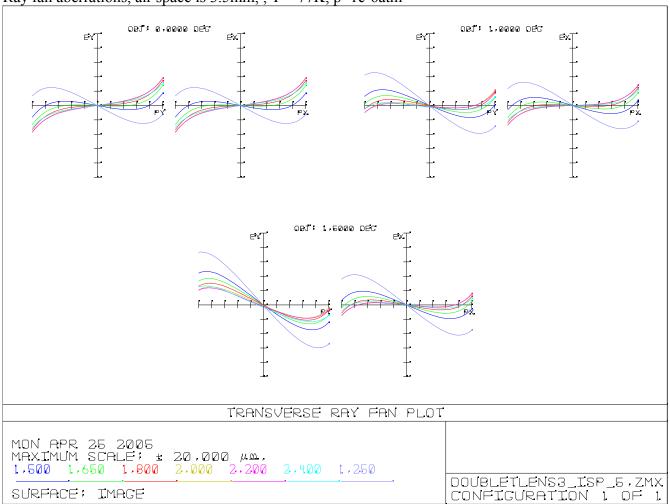
Effective focal length as a function of wavelength and environment parameters:

| $\lambda/\mu m$ | EFFL1, $t = 20$ ° $C$ , $P = 1$ $atm$ | EFFL2, $t = -196$ °C, $P = 1e^{-6}atm$ | EFFL2/EFFL1 |  |
|-----------------|---------------------------------------|----------------------------------------|-------------|--|
| 1.25            | 100.607021                            | 99.494684                              | 0.9889      |  |
| 1.50            | 100.690099                            | 99.580348                              | 0.9890      |  |
| 1.65            | 100.720604                            | 99.612232                              | 0.9890      |  |
| 1.80            | 100.740452                            | 99.633756                              | 0.9890      |  |
| 2.00            | 100.753048                            | 99.649047                              | 0.9890      |  |
| 2.20            | 100.751078                            | 99.650318                              | 0.9891      |  |
| 2.40            | 100.734387                            | 99.637458                              | 0.9891      |  |


Spot diagrams, and effective focal length as a function of the air space between the lenses @  $1.65\mu m - default$  air space is 4mm, "Quick focus" spot size X only. T = 77K, p=1e-6atm


| Air space / mm                   | 2.5    | 3      | 3.5    | 4      | 4.5    | 5      |
|----------------------------------|--------|--------|--------|--------|--------|--------|
| EFFL                             | 101.08 | 100.9  | 100.10 | 99.61  | 99.13  | 98.66  |
| Spot geom radius / µm field 0deg | 15.101 | 10.179 | 5.385  | 0.714  | 3.835  | 8.264  |
| Field 1deg                       | 13.102 | 8.207  | 3.554  | 5.753  | 10.967 | 16.034 |
| Field 1.5deg                     | 10.594 | 5.709  | 6.968  | 12.369 | 17.911 | 23.290 |

Effective focal length as a function of the air space between the lenses @ 1.65μm – default air space is


4mm, "Quick focus" spot size X only.

| Air space / mm                      | 3      | 3.5    | 4      | 4.5    | 5      |
|-------------------------------------|--------|--------|--------|--------|--------|
| <b>EFFL</b>                         | 101.71 | 101.21 | 100.72 | 100.23 | 99.75  |
| Spot geom radius / µm<br>field 0deg | 11.660 | 6.847  | 2.158  | 2.409  | 6.857  |
| Field 1deg                          | 9.656  | 4.950  | 4.146  | 9.387  | 14.480 |
| Field 1.5deg                        | 7.140  | 6.525  | 10.708 | 16.280 | 21.689 |





Ray fan aberrations, air space is 3.5 mm, T = 77 K, p=1 e-6 atm

