Astrophysics Wiki > TorusWeb Web > TorusUserManual > PlottingTorusData r7 - 26 Aug 2010 - 16:20:48 - AliciaAarnio

TORUS used to produce graphical output using internal PGPLOT calls, but these calls have now been removed in order to increase TORUS portability.

Plotting images

VTK files

Output of grid data for plotting may now be made using calls to vtk_mod subroutines, which produce <u>VTK format</u> <u>files</u>. VTK files produced by Torus on the fly include:

filename	Description				
lucy.vtk	Overwritten with each Lucy iteration, contains crossings, deltat, dust1, etacont, etaline, fixedtemp, mesh_quality, rho, tau, and temperature.				
bias.vtk	Contains: chiline, mesh_quality, and temperature.				
beforesmooth.vtk					
aftersmooth.vtk	Contains: inflow, mesh_quality, rho, temperature, and velocity_magnitude.				
rho.vtk	Contains: inflow, mesh_quality, rho, temperature, velocity_magnitude.				

VTK files can be plotted with the <u>Vislt Visualization Tool</u>. You may also like to try <u>paraview</u>.

FITS images

See the <u>Dust Continuum Models</u> section (subsection "Calculating Images") for more information on how to produce image files. The <u>SAO DS9</u> GUI can be used to plot FITS files.

To view spectral line profiles, the program <u>kvis</u> handles data cubes (output as described in the <u>atomic line</u> <u>transfer calculations</u> section) effectively. The following is an example of the fits output of an atomic line transfer model run:

• KvisScreenShot1 ?:

Clicking **View** will open this window:

• KvisScreenShot2 ?:

000)	X Vi	ew Co	ontrol	for disp	lay wind	ow 1	
Close ∇Spherical Format: Default								
Browse	rs Mo	vie	∇P	rofil	e Mod	e: Lin	е	
∇ Slice Direction: XY ∇ Profile Axis: Z								
□Freeze Displayed Intensity Range ☑Track Cursor								
Show Marker in Line Profile								
Title String:						☑Auto	Title	
🗌 Show	Beam	⊠S	how	Beam	Name	Sho	w Circle	
B	eam Xp	os	_	_	Beam	Ypos	_	

Once **Profile Mode** is changed from "none" to any other option, a profile viewing window will pop up (see next image for example). To view spectral lines wherever your cursor is, choose "line" as the profile mode, and be sure the "track cursor" box is checked. As you move the mouse around the main display window, the line profile will auto-update in the profile window.

• KvisScreenShot3 ?:

Auto V Zoom scales the intensity axis on the fly depending on where your cursor is; uncheck this (and click **Unzoom**) to fix the y axis display to the full range. To adjust the display settings in the profile window, click **Overlay** and select "axis labels." This box will pop up:

• KvisScreenShot4 ?:

○ ○ ○ X dressingControlPopup						
Close 🛛 Enable	Apply 🛛 Auto Refresh					
Show Labels Show Scale						
☑Top Tick Marks ☑Bottom Tick Marks						
☑Left Tick Marks ☑Right Tick Marks						
☑Internal Ticks □Grid Lines						
Screen Colours Paper Colours						
Change Colourmap						
Font scale 0.8						
Colours:						
Background: [31.	3ackground: Dlack					
Label:	green					
Grid:	green					

Once "enable" is checked, select display settings as desired.

Additional notes

- To generate a box average of the spectral line in a given region, change **Profile Mode** to "box average," and middle click-drag (alt+click-drag on macs) to define a rectangular region on the image. After a moment, the averaged line profile within your defined region will appear in the profile window.
- **kvis** can also generate movies- click **Movie** in the view control window. The default setting is for the X-Y plane to be the "slice direction," with the movie progressing through z values in the data cube (in our case, velocities).
- The scroll wheel on the mouse can be used to zoom in/out in the main display window, and control+left click-drag can be used to define a rectangular zoom area in the image.

Plotting spectral energy distributions

The creation of .dat files containing spectra is described <u>here</u> (subsection Calculating SEDs). SEDs can be plotted using IDL with relative ease (will attach sample code here soon).

-- <u>AliciaAarnio</u> - 26 Aug 2010

